Empirical Bayes Density Regression
نویسندگان
چکیده
In Bayesian hierarchical modeling, it is often appealing to allow the conditional density of an (observable or unobservable) random variable Y to change flexibly with categorical and continuous predictors X. A mixture of regression models is proposed, with the mixture distribution varying with X. Treating the smoothing parameters and number of mixture components as unknown, the MLE does not exist, motivating an empirical Bayes approach. The proposed method shrinks the spatially-adaptive mixture distributions to a common baseline, while penalizing rapid changes and large numbers of components. The discrete form of the mixture distribution facilitates flexible classification of subjects. A Gibbs sampling algorithm is developed, which embeds a Monte Carlo EM-type stage to estimate smoothing and hyper-parameters. The method is applied to simulated examples and data from an epidemiologic study.
منابع مشابه
EMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملبه کارگیری بیز تجربی در تهیه نقشه جغرافیایی بروز بیماری سل در استان مازندران طی سالهای 90-1384
Background and purpose: Due to the increasing information about illnesses and deaths, classified map is of appropriate methods for analyzing this type of data. Standardized infection rates are commonly used in disease mapping but had many defects. This study aimed to compare the Poisson regression models and empirical Bayes models to prepare geographical map of tuberculosis incidence in Mazanda...
متن کاملEmpirical Bayes Estimation for Exponential Model Using Non-parameter Polynomial Density Estimator
In this study, we study the empirical Bayes estimation of the parameter of the exponential distribution. In the empirical Bayes procedure, we employ the non-parameter polynomial density estimator to the estimation of the unknown marginal probability density function, instead of estimating the unknown prior probability density function of the parameter. Empirical Bayes estimators are derived for...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007